
/v,o_sTc/ /e- 206798 / /v l-c

Final Report for NAS5-32670
 JS&

Incorporating the APS Catalog of the POSS I and Image Archive in ADS.

P.I. Roberta M. Humphreys

An Astrophysics Data Program, Type 2 Contract.

The primary purpose of this contract was to develop the software to both create and access an on-

line database of images from digital scans of the Palomar Sky Survey.

This required modifying our DBMS (called Star Base) to create an image database from the

actual raw pixel data from the scans.

The digitized images are processed into a set of coordinate-reference index and pixel files that

are stored in run-length files, thus achieving an efficient lossless compression. For efficiency

and ease of referencing, each digitized POSS I plate is then divided into 900 subplates. Our

custom DBMS maps each query into the corresponding POSS plate(s) and subplate(s). All

images from the appropriate subplates are retrieved from disk with byte-offsets taken from the

index files. These are assembled on-the-fly into a GIF image file for browser display, and a

FITS format image file for retrieval. The FITS images have a pixel size of 0.33 arcseconds. The

FITS header contains astrometric and photometric information. This method keeps the disk

requirements manageable while allowing for future improvements.

I

When complete, the APS Image Database will contain over 130 Gb of data. A set of web pages

query forms are available on-line, as well as an on-line tutorial and documentation. The database

is distributed to the Internet by a high-speed SGI server and a high-bandwidth disk system.

URL is http:Naps.umn.edu/IDB/

The image database software is written in perl and C and has been compiled on SGI computers

with IRIX5.3. A copy of the written documentation is included and the software is on the

accompanying exabyte tape.

Publications

"An On-lineDatabaseofAPS POSSImages,"C.C.Comuelle,G.S.Aldering,A. Sourov,
P.Thurmes,andR.M. Humphreys,1996,in AstronomicalDataAnalysisSoftwareandSystems
Y, ASPConferenceSeries,101,p. 501.

"The APS Catalogof thePOSSI andImageDatabase,"C.S.Cornuelle,G.Aldering,
R.M. Humphreys,J. Larsen,andJ.Cabanela,1998,in NewHorizonsfrom MultiWavelengthSky
Surveys,IAU Symp.179,in press.

"The APSCatalogof thePOSSI, ImagesDatabase,andLuytenProperMotion Catalog,"
C.S.Comuelle,G. Aldering,R.M. Humphreys,J.Larsen,andJ.Cabanela,1997,in_Proper
Motion andGalacticAstronomy,ASPConferenceSeries,127,55.

How Image Database Queries are Processed

This document is not intended for novice users of the image database. The readers should be the ones

who are working on or will work on maintaining and�or extending the APS image database. Hence,
some tedious details are omitted. The main medium to access the APS image database is through the

World Wide Web. The online query form can be found at : http://spihr.spa.umn.edu/IDB/.
Documentations and tutorial on how to use the tool are there, too.

1. A Brief Introduction :

After clicking the submit button, the input data are packed and sent back to a Perl script called

idb.def.pl. This script analyses the data, then calls query_www.pl for further processing.

query_www.pl is also a Perl script which does further calculation on the data, invokes

mosaic_idb to do the actual query processing, and produce the image in FITS or GIF format. After

that, query_www.pl returns the values needed for idb.def.pl to find the output image files to return

to the browser, idb.defipl also does the appropriate compression before sending the file back or

displaying the information on how to obtain the image file. On the following sections, we shall
discuss in more details how each of these modules works.

2. The Input Parameters :

As can be seen from the web page, the input parameters to the query form are :

O RA, DEC of the central coordinates,

O Equinox,

O Field Width (in arcminutes),

O Plate Emulsion (O - blue, or E - red),

O Data Correction Mode (Full correction, Quick correction, or Raw - meaning no correction

is applied)

O File Compression Method (gzip, unix compress or non).

3. How query_www.pl works ?

query_www.pl is invoked using the following syntax :

query_www.pl {OIE} {Ra} {Dec} {Width in arcminutes} {Ancillary file name} [-Tnf]

where the last parameter (either -T, -n or -f) is optional. From the input emulsion (O or E), the

central query box position (Ra and Dec), the ancillrary file name (added by Juan), and the query
box width this script will generate the apropriate FITS image file(s). The script print out the FITS

file names at the last step. The flags are described as follows.

0 -T original data will be standard APS stars, transits, and densities in their usual directories; T

stands for Transmision.

0 -f fully-corrected pixel mapped mosaic output.

0 -n totally uncorrected mosaic output - bloody awkful.

Notice that the coordinates must be in hh:mm:ss sexagesimal format. This program now runs on

SGI machine • spihr.spa.umn.edu. The script source code is at

/apslimage_database/src/querying/query_www.pl

Examples of usage are:

O query_www.pI O 14:22:25.00 -30:20:28.00 5

O query_www.pl O 12:00:03.00 -33:00:00.1 15

Before examining the code, there are some parameters to remember as follows.

0 $ftp_www = "/faster/ftp" : the tip root directory.

0 $cgi_dir = "/usr/locallete/httpdlcgi-bin" : where all the cgi scripts are.

0 $ftp_idb = "sbflDB" : where all the idb ftp files are.

0 $ftp_dir = "$ftp_www/$ftp_dir".

Here is a trace of program execution •

i. At first, widthToMinMax($ra, $dee, $width) is called and the result is returned to

@radecMinMax, where ra, dec and width are the input parameters to query_www.pl

* widthToMinMax •

Input • ra, dec, and width of the field.

Output • an array with 4 values

1. "ra_min dec_min",

2. "ra_min dec_max",

3. "ra_max dec_rain",

4. "ra_max dec_max"

. Next, pss_list is called on every line of @radecMinMax with -p option. Basically, pss_list -p

returns informations about plates that match those ra's and dec's. The result is stored in

@pssResult and looks like follows.

POSS RA(1950) DEC(1950) E/O EPOCH LONG LAT

914 14:22:25.000 -30:20:28.00 S 86 17 Apr 1958 325.82 28.10

3. @filResult = &pssFilter0;

* pssFilter :

Input: @radecMinMax and @pssResult

Output : Using the POSS numbers in @pssResult and the ra, dec in @radecMinMax, this

function returns a list of strings in the following form, which contains the project, plate, ra,

and dec of the 4 corners of the queried box

P266 O_109 11:59:27.22 32:52:30.100

P267 O_1599 11:59:27.22 32:52:30.100

. Next, idb_convert is invoked to produce a list of {x, y} coordinates instead of the tuple

{project, plate, ra, dec}. @conResuit contains the output of idb_convert. It looks like :

906989.6 838369.5

53449.9 851757.0

5. Now, execute convFilter

.

* convFilter :

Input : @conResult and @filResult

Output : nothing

Side Effect : cut out all the error messages, comments, etc. in @conResult and @filResult.

Keep only the data in there. Notice that the number of lines in @conResult and @filResult
should be the same.

Concatenate each line of @filResult with the corresponding line of @conResult. After doing

this, @filResult will contains lines of tuples {project, plate, ra, dec, x, y } like follows.

P266 0_109 11:59:27.22 32:52:30.100 906989.6 838369.5

P267 0_1599 11:59:27.22 32:52:30.100 53449.9 851757.0

7. @ptdResult = &plate_twiddle();

.

* plate_twiddle :

Input : @filResult with the above format

Output : a list of tuples containing the following elements

{project, plate, xmin, xmax, ymin, ymax, plate_twiddle_list.$plate.$procesE

These xmin, xmax, ymin, ymax values are on every plate that intersects the queried box. We

will have to query individual plate and combine the resulting images later to produce the last

resulting image. Example of @ptdResult is as follows. Notice that process# is the process id

of the current query_www.pl script.

P266 0_109 905712.6 943622.6 800476.6 838369.5 plate_twiddle_list.O_lOg.13E

P267 0_1599 53449.9 91243.3 815187.7 852980.0 plate_twiddle_list.O_1599.13E

Now, this step is fairly important : get the data from @ptdResult, run pss_list again to get

more information on plates and produces @maData which looks like follows. Note that the

example is just one line of @maData.

P266 14 May 1950 11:44:58.000 35:28:20.00 906989.6 838369.5 P267 7 May 1956

The data manipulation is sort of messy, I didn't have anymore interest in improving Chris'

code (not a good excuse, but that's what happened). @maData is used by make_ancillary to

produce the appropriate ancillary file with the name provided as a parameter to

query_www.pl.

* make_ancillary :

Input : @maData

Output : nothing

Side Effect : write out needed data to the ancillary file with the file path name provided as

parameter to the script. Here is one example of how the file is like. Notice that the data in the

file is used later by mosaie_|db to produce the FITS image and to write things into the FITS

file's header. Many of these parameters are too specific to astronomy, hence I can't explain

further (my major is Computer Science :-).

ANCILLARY ancfile

Mon Jan 5 15:46:43 CST 1998

.//query_www.pl O 12:00:03 33:00:00.1 15
906989.6 943622.6 = -36633

838369.5 - 838369.5 = 37892.9

53449.9 - 91243.3 = -37793.4

851757.0 852980.0 = 36569.3

PROJECT P266

PLATE O_109

EPOCH_D 14

EPOCH_M May

EPOCH_Y 1950

CNTR_RA 12:00:03

CNTR_DEC 33:00:00.1

X_CNTR 906989.6

Y_CNTR 838369.5

WIDTH_M 15

X_MIN 905712.6

X_MAX 943622.6

Y_MIN 800476.6

Y_MAX 838369.5
CRVALI 176.24167

CRPIXI -1117

CRVAL2 35.47222

CRPIX2 1155

PROJECT P267

PLATE O_1599

EPOCH_D 7

EPOCH_M May

EPOCH_Y 1956

CNTR_RA 12:00:03

CNTR_DEC 33:00:00.1

X_CNTR 53449.9

Y_CNTR 851757.0

WIDTH_M 15

X_MIN 53449.9

X_MAX 91243.3

Y_MIN 815187.7

Y_MAX 852980.0

CRVALI 183.19583

CRPIXl -1152

CRVAL2 35.47139

CRPIX2 1115

9. The last step is to call mosaic_idb to produce the FITS image files, whose execution is

discussed in the last section, query_www.pl return the FITS file name(s) produced.

There are four more helper functions in query_www.pl, which are described briefly here.

* printUsage • print out to stdout the usage of query_www.pl

.

* toAnc • take a string as input, write the string to the ancillary file, whose handle was opened at

the beginning of the script.

* errSys • print out the system error and quit

* cleanup • close the file descriptors, clean things up

How mosaic_idb works ?

mosaic_idb is a grogram written in C with the task of producing the FITS image files given some

parameters. The source code of mosaic_idb is at •

/ aids/ image_database /src/mosai c_idb

The command line syntax of mosaic_idb is as follows

mosaic_idb projectname IDlate_name fits_name

ancillary_name XMIN XMAX YMIN YMAX

or

mosaic_idb projectname plate_name fits_name

ancillary_name XC YC Rad

Notice that the first format has 8 non-option arguments and the second one has 7 non-option

arguments. The semantics of projectname, plate_name should be clear, fits_name is the name

of the output FITS image file. ancillary_name contains the full path name to access the ancillary

file. XMIN, XMAX, YMIN, YMAX are the bounding coordinates of the queried box within that

particular plate. For the second form, XC, YC are the central coordinates of the queried box, Rad

is the half-width of the square box centered at XC, YC.

A good understanding of FITS format is crucial to understand the code. Important FITS
documentations are listed as follows.

0 FITSIO homepage • http:/_easarc.gsfc.nasa.gov/docs/soflware/fitsio

O C FITSIO user guide • http://heasarc.gsfc.nasa.gov/docs/software/fitsio/userc/user_c.html
O The FITSIO cook book •

http://heasarc.gsfc.nasa.gov/docs/soflware/fitsio/cookbook/cookbook.htmI

I appology for my lack of a thorough knowledge of exactly how the images are constructed. There

are several things that I don't understand such as : image correction, skew values, or Gaussian

weight table for pixel remapping. However, from a programmer point of view, I DO know how tile

whole thing works, only some details are not as clear to me as the others.

The program uses a lot of global variables, some of them are parameters hard-coded into constanl

variables such as DIR, PROJECT, etc. Follows are the list of the most important global variables

used by mosaic_idb. They are defined in mosaic_idb.h.

/* starting path for all project/plate information */

#define DIR "/i"

/* Input region information: */

long XMIN, XMAX, YMIN, YMAX;

/* Project/Plate information */
char PROJECT[32];

char PLATE[32];

int LEVEL = I; /* 1 is standard APS */

/* Flags */

int STRIPE_RELATIVE;

int SHORT_OUTPUT;

int APPLY_CORRECTIONS;

int FULL_CORRECTIONS;

int DIAGNOSTICS;

int MBACK_FLAG;

/* stripe-relative stars in the output */

/* short output */

/* apply corrections */

/* Pixel remapping too. */

/* Diagnostic output to a file. */

/* Deduct background value from pixel. */

/* Mosaic raster info */

int NCOLS; /* number of columns */

int NROWS; /* number of rows */

unsigned char *OUTPUT_BUFFER; /* the output buffer for the final raster */
int ICOLS; /* number of columns */

int IROWS; /* number of rows */

unsigned char *IMAGE_BUFFER; /* the output buffer for the image raster */
int RCOLS; /* number of columns */

int RROWS; /* number of rows */

unsigned char *RASTER_BUFFER; /* the buffer for the corrected image raster */
int MIN_PIXEL; /* Minimum pixel value for a given image. */

int MAX_PIXEL; /* Max pixel value over all, less than MAXD */

long PREV_IM_BYTES; /* The largest previous image buffer size. */

long PREV_RAS_BYTES; /* The largest prev. corrected raster buf size */

int GWEIGHTS[MAX_GWEIGHTS]; /* Gaussian weights for corrections. */

double SKEW ARRAY[32768]; /* Indexed in eres, fill with skews. */

And here are some frequently used data structures :

typedef unsigned char IDB_DN;

typedef short IDB_TR;

typedef struct {
int starnum; /* the plate-relative star number from the old S_REC */

int dia; /* star diameter */

int transits; /* offset for Iseek into the transits file */

int dens; /* offset into the densitometry file */

long xmin, xmax, ymin, ymax; /* bounding box parameters */

} IDB_SREC;

/* For mback subtraction information. */

struct mback_struct {

int **rast;

int nr, nc, x0, y0;

double dx, dy;

] mback;

struct heady (

int n_columns;

int n_rows;

};

struct info {

int in_xc;
int in_yc;
char in_dec[12];

char in_ra[12];

char project[4];

char plate[6];

int plate_ra_h;

int plate_ra_m;

int plate_ra_s;

int plate_dec_d;

int plate_dec_m;

int plate_dec_s;

};

struct key {

char word[S_WORD];

char data[S_DATA];

char text[S_DATA];

};

struct key aps_key[N_KEYS] = (

{"CNTR_RA","\0","Query central Right Ascension (h:m:s)"),

{"CNTR_DEC","\0","Query central declination (d:m:s)"},

{"WIDTH_M","\0","Query box width in arcminutes"},

["PROJECT","\0","APS Project number"},

("PLATE","k0","POSS Plate label ID"},

{ "X_MIN" ,

("X_MAX" ,
{
{
{
{
C
C
C
C
{
{
{

};

"\0","Minimum box x-value

"\0","Maximum box x-value

"Y_MIN","\0","Minimum box y-value

"Y_MAX","k0","Maximum box y-value

"EPOCH_D","\0","Epoch day"},

"EPOCH M","\0Epoch month"}
_ 0

"EPOCH_Y","\0","Epoch year"},

"X_CNTR"

"Y_CNTR"
"CRVALI"

"CRPIXI"

"CRVAL2"

"CRPIX2"

(microns)"},

(microns)"},

(microns)"},

(microns)"},

"\0","Central plate x-value (microns)"},

"\0","Central plate y-value (microns)"},

"\0","Plate central Right Ascension (degrees)"},

"\0","Reference pixel i"},

"\0","Plate central declination (degrees)"},

"\0","Reference pixel j"}

The main function is defined in mosaic_idb.c, which basically calls three other functions in order

described below.

1. setup(argc, argv) (in setup.c)

The main task of this function is to parse the command line parameters and options (if any),

then set the appropriate global flags and variables. More specifically, the flags to be set are :

MBACK_FLAG, DIAGNOSTICS, FULL_CORRECTIONS, APPLY_CORRECTIONS,

and SHORT_OUTPUT. The meaning of these flags has been specified above.

The global variables get their values from the command line parameters are : PROJECT,
PLATE, F_NAME (FITS file name), G_NAME (GIF file name), A_NAME (ancillary

file name), XMIN, XMAX, YMIN, YMAX. Notice that if there are only 7 non-option

parameters, XMIN, XMAX, YMIN and YMAX can be calculated from XC, YC and Rad

parameters.

After that, get._plate_info (in setup.c) is called to grab all the necessary plate information,
e.g the state vector, ytop struct, the spacing between scan lines (DENS X SCALE), spacing

between pixels on the same scan line (DENX_Y_SCALE)

There are some library function calls that I don't really understand in depth and couldn't find

any documentations about them :

• get_st_pit : to get state vector.

• get_yt_plt : to get ytop struct.

• get_ddx_plt : to get spacing between scan lines

• get_corr_plt : to apply corrections (?)

There is one important directory : DIR/PROJECT/PLATE/sv that contains the data files

necessary for filling up some conversion tables. Those tables are D2T_ARRAY (Densitity to

Transmission table), TI_lut (Transmission to Intensity lookup table).

When all above have been done, setup_raster is invoked to allocate space for the raster and

set up the raster header. The values to be set up are : DENS_OUTPUT, NCOLS, NROWS,

and OUTPUT_BUFFER. Then, the skew array and the Gaussian weights table are filled up.

2. mosaic_idbO (in mosaic idb.c)

The main task this function does is to produce a list of all stars whose rectangular frames

intersect the queried box region (rectangular). Recall that the region is defined by global
variables XMIN, XMAX, YMIN, YMAX initialized earlier. In addition to that, mosaic_idb

fills up the OUTPUT_BUFFER with the image data which is then used to write out to the

GIF and FITS files. Follows are the steps this function perform to

1. Determine the bounding stripes and boxes by using in_which_box like follows :

olap = in which_box(&box0, &stripe0, XMIN, YMIN, &ST);

then

in_which_box(&boxn, &stripen, XMAX, YMAX, &ST);

.

,

Thus, now we know the box number and the stripe number of the lower left corner

(box0, stripe0 - associated with XMIN, YMIN), plus the box number and the stripe

number of the upper right corner (boxn, stripen - associated with XMAX, YMAX).

For each of the stripe snum from stripe0 to stripen, do all of the following steps.

Notice that all the load_idb???_lstripe functions take the stripe number as parameter,

return the data read from appropriate files into idb_srec of type IDB_SREC described
above.

Load the star data for the current stripe by calling load_idbstars_lstripe (in loader.c).

This will fill up IDB SREC.starnum, IDB_SREC.dia, IDB_SREC.(xmin, xmax, ymin,

ymax) of the idb_srec array passed to the function, starnum is the the plate-relative

starnum from the old S_REC. dia is the diameter of the star. xmin, xmax, ymin, ymax

are the star bounding box corner coordinates. The data file is at

DIRIPROJECT/PLATEIstars/levLEVEL/str.snum, where LEVEL is a global variable.

4. Loadthestransitsdatafor the current stripe by calling load_idbtransits_lstripe (in

loader.c). This will fill up IDB SREC.transits of the idb_srec array passed to the
function, transits is the offset for lseek into the transits file. The data file is at

DIR/PROJECT/PLATE/transits/IevLEVEL/str.snum where LEVEL is a global
variable.

5. Load the densitometry data for the current stripe by calling load_idbdens_lstripe (in

loader.c). This will fill up IDB_SREC.dens of the idb_srec array passed to the

function, dens is the offset for lseek into the densitometry file. The data file is at

DIR/PROJECT/PLATE/dens/str.snum

6. If the MBACK_FLAG is set, call get_mback (in loader.c) to load the mback for the
file.

7. Now, for each bnum from box0 to boxn, call load_box0 (in loader.c) to load data in

the box. load. box takes stripe number, box number and return (by side effect) a list of
star numbers which lie inside the box. The data is read from

DIR/PROJECT/PLATE/boxes/stripe.snum/box.bnum. Then, for each of the star in

the box, check if it intersects the queried box. If so, call paste_star (in pastry.c) to add

the star to the raster output and print out the star number.

3. wrap_up0 (in mosaic_idb.c)

What this does is of the most interest to us. wrap_up calls four other functions as described

in order below to read the ancillary file, to do initializations of the FITS manipulation plus

preparing the FITS header, to write the entire FITS image file to disk and finally to produce
the associated GIF file.

• read_ancillary0 (in do_fits_beta.c) :

Input : there is no parameters. The input is the A_NAME (ancillary file name).

Output : an array of struet key (defined above) of length N_KEYS. A key is a tuple of

3 elements : a keyword, a key value, anda string of comment. These information are

needed for filling out the FITS header.

Basically, read_ancillary reads ancillary information from the file given on the

command line. Notice that the first 5 lines are skipped, all lines after 5 + N_KEYS

inclusively are ignored (currently, N_KEYS = 18). All the information we need lies on

those lines of the ancillary file. The pointer to the key array is returned to ancillary in

wrap_up0 function. The key array is then passed to have_fits as described next.

• have_fits(...) (in do_fits_beta.c) :

have_fits has the following prototypes :

void have_fits(fitsfile **make_fptr, struct key **anc_info,

int *make status)

Notice that make_fptr is a pointer to the pointer to a fitsfile type. The file hasn't been

opened yet, that is why we have to pass it this way. anc_info is the pointer to the value

returned by read_ancillary (another pointer). I'm not sure why this has to be done this

way. I might changeit to asinglepointerlater.This functiondoesthefollowing •

1. Initialize theFITS file for outputusingF_NAME providedat thecommandline
parameter.

2. Write theFITS headerusingthedatagottenfrom ancillaryfile. Theheader
contains2 parts: abasicpart(containingthingslike Universityof Minnesota,
departmentof Astronomy,...)andanotherpartcontainingmorespecific
informationon theimage.Two functions,namelyfits_head_basics and

fits_head_ancillary (both in do_fits_beta.c) are called respectively to do the job.
The header look like follows :

SIMPLE

BITPIX

NAXI S

NAXISI

MAXIS2

COMMENT

COMMENT

COMMENT

COMMENT

CTYPEI

CTYPE2

CDELTI

CDELT2

CROTAI

= T / file does conform to FITS standard

= 8 / number of bits per data pixel

= 2 / number of data axes

= 293 / length of data axis 1

= 293 / length of data axis 2

FITS (Flexible Image Transport System) format defined in Ast

Astrophysics Supplement Series v44/p363, v44/p371, v73/p359,
Contact the NASA Science Office of Standards and Technology

FITS Definition document #100 and other FITS information.

= 'RA---TAN' / X-axis type

= 'DEC--TAN' / Y-axis type

= 0.000092972 / Degrees per pixel

= 0.000092972 / Degrees per pixel

= 0.0000 / Rotation (degrees)

EQUINOX = 1950 / Equinox of coordinates
RADECSYS= 'APS POSS I' / Coordinate reference frame

SURVEY = 'POSS I/APS scanned plates' /

= 0 / Value for empty/null/error pixelBLANK

COMMENT

DATE

COMMENT

COMMENT

COMMENT

COMMENT

COMMENT

COMMENT

COMMENT

COMMENT

COMMENT

COMMENT

COMMENT

COMMENT

COMMENT

COMMENT

COMMENT

COMMENT

COMMENT

COMMENT

= '30/12/95' / FITS file creation date (dd/mm/yy)

This file was produced via the APS Image Database from scans

I survey plates. Pixels are a relative density value compute

original beam transmission data.

For more information please contact:

APS Project

Astronomy Department

University of Minnesota

116 Church Street SE

Minneapolis, MN 55455 USA

(612) 624-9069, FAX (612) 626-2029

aps@aps.urnn.edu

http://aps.umn.edu

The APS Image Database is supported by NASA ADP grant NAS5-3

CNTR_RA = '13:00:00'

CNTR_DEC= '30:00:00'

WIDTH_M = '4
PROJECT = 'P323

PLATE = 'E_1393

X MIN =

X_MAX =

Y_MIN =

Y_MAX =

/ Query central Right Ascension (h:m:s)

/ Query central declination (d:m:s)

' / Query box width in arcminutes

' / APS Project number

' / POSS Plate label ID

118551.86719 / Minimum box x-value (microns)

122167.61719 / Maximum box x-value (microns)

142289.53125 / Minimum box y-value (microns)

145905.01562 / Maximum box y-value (microns)

EPOCH_D= 15 / Epoch day

EPOCH__M = 'Apr ' / Epoch month

EPOCH_Y = 1955 / Epoch year

X_CNTR = 173047.73438 / Central plate x-value (microns)

Y_CNTR = 171809.84375 / Central plate y-value (microns)

CRVALI = 196.13750 / Plate central Right Ascension (degree

CRPIXl = 4240 / Reference pixel i

CRVAL2 = 29.49028 / Plate central declination (degrees)

CRPIX2 = 0 / Reference pixel j
END

[] write_fits(...) (in do_fits_beta.c) •

As the name suggests, write fits actually writes the image data to the FITS file. The

data has been created and put into OUTPUT_BUFFER by calling function

mosaic idb described above. There is nothing more to say about write_fits. But there

are some frequently used CFITSIO functions which are used in this program that I

would like to introduce here. More information can be found at the FITS homepage. It

is important to know some descriptions of useful FITS functions as follows.

. ffopen : Open an existing FITS file with readonly or readwrite access. The

iomode parameter has allowed symbolic constant values of READONLY or
READWRITE. If the filename = "-" then CFITSIO will read the FITS file from

the stdin file stream rather than from a disk file. If the file to be opened resides in
memory then a null file name may be given to indicate that the file already exists

in memory; otherwise the specified diskfile (or the stdin stream if the file name =

"-") will be copied into memory and all subsequent operations on the file will

take place on the memory copy of the file. Note that any modifications to the

memory file do not automatically get copied back to the disk file in this case.

int fits open_file / ffopen

(fitsfile **fptr, char *filename, int iomode, > int *status)

. ffinit : Create and initialize a new empty FITS file. If the filename = "-" then the

file will be written to the stdout file stream rather than to magnetic disk. (The file

is actually created in memory and flushed to the stdout stream when the FITS file

is closed). If a memory buffer has been allocated for the file then the file name is

ignored unless it is '-' in which case the memroy file is copied to the stdout
stream when the file is closed.

int fits_create_file / ffinit

(fitsfile **fptr, char *filename, > int *status)

. ffgerr • Return a descriptive text string corresponding to a CFITSIO error status

code. The 30-character length string contains a brief description of the cause of
the error.

void fits get_errstatus / ffgerr (int status, > char *err_text)

. ffelos • Close a previously opened FITS file. If the file resides in a user-allocated

memory buffer (see fits_set_mere_buff, below) then the memory buffer is left

unchanged and the application program must free the memory when it is no

°

.

.

.

longer needed.

int fits_close_file / ffclos

(fitsfile *fptr, > int *status)

ffphp?: Put the primary header or IMAGE extension keywords into the CHU.

The simpler ffphps routine is equivalent tb calling ffphpr with the default values

of simple = TRUE, pcount = 0, gcount = 1, and extend = TRUE. The PCOUNT,

GCOUNT and EXTEND keywords are not required in the primary header and

are only written if pcount is not equal to zero, gcount is not equal to zero or one,
and if extend is TRUE, respectively. When writing to an IMAGE extension, the

SIMPLE and EXTEND parameters are ignored. Refer to Chapter 9 of CFITIOS

User's Guide for a list of pre-defined bitpix values.

int fits_write_imghdr / ffphps

(fitsfile *fptr, int bitpix, int naxis, long *naxes, > int "

int fits_write_grphdr / ffphpr

(fitsfile *fptr, int simple, int bitpix, int naxis, long *n_

long pcount, long gcount, int extend, > int *status)

ffpky? : Put (append) a new keyword of the appropriate datatype into the CHU.

There is a separate routine for each datatype. Note that ffpkys will only write

string values up to 68 characters in length and longer strings will be truncated.

The ffpkls routine can be used to write longer strings, using the non-standard
FITS convention that was described in an earlier section.

int fits_write_key_str / ffpkys

(fitsfile *fptr, char *keyname, char

> int *status)

*value, char *comment,

int fits_write_key_[log, Ing] / ffpky[lj]

(fitsfile *fptr, char *key]name, DTYPE numval,

> int *status)

char *comment

int fits_write_key_[flt, dbl, fixflg, fixdbl] / ffpky[edfgl

(fitsfile *fptr, char *keyname, DTYPE numval, int decimals,

char *comment, > int *status)

ffpeom • Put (append) a COMMENT keyword into the CHU. The comment

string will be split over multiple COMMENT keywords if it is longer than 70
characters.

int fits_write_comment / ffpcom

(fitsfile *fptr, char *comment, > int *status)

ffpnul • Define the integer value to be used to signify undefined pixels in the

primary array or image extension. This is only used if BITPIX = 8, 16, or 32.
This does not create or change the value of the BLANK keyword in the header.

int fits_set_imgnul / ffpnul

(fitsfile *fptr, long nulval, > int *status)

9. ffpprb • Put elements into the data array. The datatype is specified by the suffix

of the name of the routine.

int fits_write_img_[byt, sht, usht, ing, ulng, int, flt, dbl] /

ffppr[b,i,ui,j,uj,k,e,d]

(fitsfile *fptr, long group, long firstelem, long nelements

DTYPE *array, > int *status);

• make_gif(...) (in do_gifs.c) : This function handles interaction with the netpbm

routines that generate a GIF file, namely GIFEncode and the pre-compiled package.

The main routines to use here are from the gifdraw package. The data is from

OUTPUT_BUFFER as in the case of FITS file. Since creating GIF files is not our

main concern now, so I'm going to delay describing this function in details.

More information about GIF can be found at •

• GIF draw library • http://www.boutell.com/gd/

• GIF lib library • http://locke.ccil.org/-esr/giflib/

by Hung Q. Ngo
hngo @cs.umn.edu

